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A local Maxwellian thermostat for the multiparticle collision dynamics algorithm is pro-
posed. The algorithm is based on a scaling of the relative velocities of the fluid particles
within a collision cell. The scaling factor is determined from the distribution of the kinetic
energy within such a cell. Thereby the algorithm ensures that the distribution of the rela-
tive velocities is given by the Maxwell–Boltzmann distribution. The algorithm is particu-
larly useful for non-equilibrium systems, where temperature has to be controlled locally.
We perform various non-equilibrium simulations for fluids in shear and pressure-driven
flow, which confirm the validity of the proposed simulation scheme. In addition, we deter-
mine the dynamic structure factors for fluids with and without thermostat, which exhibit
significant differences due to suppression of the diffusive part of the energy transport of
the isothermal system.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Soft matter systems such as polymer and biopolymer solutions, colloidal suspensions, vesicles, cells, and microemulsions
can display complex dynamical phenomena on the mesoscopic and macroscopic scale, which are governed by hydrodynamic
interactions between their microscopic constituents. Direct simulation of such effects is difficult due to the presence of dis-
parate length and time scales. The desire to bridge these scales stimulated the development of mesoscale simulation tech-
niques. Among them, the multiparticle collision dynamics method (MPC) [1–4], a particle-based approach, proved well
suited for hydrodynamic simulations in a broad spectrum of applications [5–12]. The algorithm consists of streaming and
. All rights reserved.
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collision steps. During the collisions, particles exchange momentum and energy. For a closed system, the algorithm con-
serves energy and momentum. In addition, the distribution function of a particle velocity is given by the Maxwell–Boltz-
mann distribution for a large number of particles in a system. However, this might no longer be true when the fluid is
exposed to an external field, such as a shear or Poiseuille flow, because the additional forces lead to an increase of the kinetic
energy of the fluid particles. In order to maintain a constant temperature, a control mechanisms has to be implemented.

Various constant temperature simulation schemes have been proposed in the literature [13–16,20–24,17,19,18,25]; not
all of them ensure that a canonical ensemble is achieved. For molecular dynamics simulations of atomistic and molecular
systems, the extended-phase-space method is very popular [13,14,23,24,17,19,18]. As has been shown, this method provides
canonical ensemble averages when the system is chaotic [17,19,18]. Here, the phase space is typically extended by one or
two additional variables, depending on its implementation. Hence, the additional numerical effort is small compared to
the integration of the equations of motion for the large number of system degrees of freedom. The extended-phase-space
method could also be applied to the MPC algorithm. However, in a study of the dynamics of dissolved particles in external
fields, e.g., polymers, colloids, vesicles, etc., it is often necessary to control the temperature locally, because heat is generated
non-homogeneously. This implies that a large number of additional variables would have to be introduced, which increases
the numerical overhead. Moreover, the fluid particle equations of motion are more involved by the coupling to the heat bath
degrees of freedom and a more sophisticated integration scheme is required compared to the analytical solution for the bal-
listic motion of the non-augmented fluid system.

Velocity scaling, as proposed in Refs. [16,26,4], leaves the equations of motion unchanged. In its simplest form, velocity
scaling keeps the kinetic energy of a system at the desired value by multiplying the velocities of all particles by the same
factor [8,27]. This corresponds to an isokinetic rather that an isothermal ensemble. The canonical kinetic energy distribution
can be obtained by choosing a scale factor from the appropriate distribution of kinetic energies [16,26,4,25].

Various collision schemes have been proposed for the MPC algorithm [1,3,4,28,29]. Typically, the stochastic rotation
dynamics (SRD) approach is adopted [1,3,4], which corresponds to a microcanonical ensemble. In SRD, temperature control
can be achieved by either global, i.e., for all particles of a system, or local velocity rescaling. For an anisotropic and inhomo-
geneous system, global scaling might be inappropriate, because it would maintain temperature inhomogeneities. An elemen-
tary feature of MPC algorithms is the partition of fluid particles in collision cells. This aspect allows to set up a profile-
unbiased thermostat [30,31,27] by subtracting the mean cell velocities from those of the individual particles of every cell
and scaling of the relative velocities.

A canonical ensemble is simulated by the MPC scheme proposed in Refs. [28,29]. Here, in the collision step new relative
velocities are assigned to every fluid particle, which are taken from a Maxwell–Boltzmann distribution. This approach is par-
ticular advantageous for simulations with angular momentum conservation [33,32].

Simulations are often performed applying periodic boundary conditions [13]. Excess heat produced by an external field
cannot be removed in this case via any physical mechanism such as walls. Thus, it is necessary to apply one or the other of
the described thermostats. A fluid system confined between surfaces could be thermalized by connecting the surfaces to a
heat reservoir [34]. The extent to which heat is taken out of the system then depends on the heat-conducting properties of
the model fluid [34]. For a reasonably realistic model of a fluid, we would not want to perturb the system by an additional
thermostat. The situation may be different for a model fluid, where heat conduction may perturb the desired description of
the fluid. Since we are typically interested in a solution of Stokes equation with a homogeneous temperature, an additional
local temperature control is necessary even for a system confined between walls.

In this article, we propose an alternative velocity-scaling method. Instead of sampling the scale factor from the Maxwell–
Boltzmann distribution of the velocities by a Monte Carlo scheme [16,26,4], we take the kinetic energy directly from its ther-
mal distribution function. Hence, we assure that the scaling factor obeys the correct distribution and statistical properties
such as detailed balance are correctly captured, in contrast to Monte Carlo procedures for rescaling velocities [26,4]. For this
purpose, we will first determine the distribution function of the kinetic energy of our system. By applying the method to fluid
simulations under shear, we demonstrate that even the local velocities obey the Maxwell–Boltzmann distribution. In a study
of a fluid confined between two parallel walls, which is exposed to a pressure gradient, we demonstrate the inability of the
global scaling scheme to yield the correct velocity profile, temperature, and particle density distribution. At the same time,
the newly proposed scaling scheme provides the desired fluid behavior.

The article is organized as follows. In Section 2, the multiparticle collision dynamics method as well our cell-level Max-
wellian thermostat are described. Results for the fluid velocity distributions in the presence of shear and Poiseuille flows are
presented in Section 3. Differences in the dynamic structure factors of thermalized and non-thermalized MPC fluids are dis-
cussed in Section 4. Section 5 summarizes our results.
2. The model

2.1. Multiparticle collision dynamics

In the MPC algorithm, the fluid is modeled by a set of N point-like particles of mass m each, which move in continuous
space with velocities determined by a stochastic process. The algorithm consists of alternating streaming and collision steps
[1]. In the streaming step, the particles move ballistically and their positions are updated according to
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riðt þ DtÞ ¼ riðtÞ þ v iðtÞDt; ð1Þ
where riðtÞ denotes the position of particle i at time t, v iðtÞ its velocity, and Dt the time interval between two collisions,
which we term collision time.

The streaming step is followed by a collision step in which the particles interact with each other and exchange momen-
tum. In three-dimensions, the simulation box is partitioned into cubic collision cells of side length a. For the SRD version of
MPC [4], the relative velocities with respect to the center-of-mass velocity vcm of every cell are rotated by an angle a accord-
ing to
v iðt þ DtÞ ¼ v̂cmðtÞ þ RðaÞ½v̂ iðt þ DtÞ � v̂cmðt þ DtÞ�; ð2Þ

where v̂ iðt þ DtÞ ¼ v iðtÞ is the velocity after streaming and RðaÞ the rotation matrix. The orientation of the rotation axis is
chosen randomly for every collision cell and time step. The rotation matrix reads
RðaÞ ¼
l2
x þ ð1� l2

x Þc lxlyð1� cÞ � lzs lxlzð1� cÞ þ lys

lxlyð1� cÞ þ lzs l2
y þ ð1� l2

yÞc lylzð1� cÞ � lxs

lxlzð1� cÞ � lys lylzð1� cÞ þ lxs l2
z þ ð1� l2

z Þc

0BB@
1CCA;
with lx ¼ cosðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
; ly ¼ sinðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
; lz ¼ h; c ¼ cosðaÞ, and s ¼ sinðaÞ. u and h are uncorrelated random numbers,

which are taken from uniform distributions in the intervals ½0; 2p� and [�1,1], respectively. The conservation of mass,
momentum, and energy in a collision step leads to long-range correlations between the particles [1,2]. The velocity distri-
bution satisfies the Maxwell–Boltzmann distribution in the limit N !1 [3] and the probability to find Nc particles in a cell
is given by the Poisson distribution
pðNcÞ ¼ e�hNcihNciNc=Nc!; ð3Þ
where hNci is the average number of the particles found in a cell. As has been shown, this dynamics yields the correct hydro-
dynamic behavior [3,4,35,36]. Notice that the presence of an external field, such as shear flow or a gravitational field, the
velocity changes during the streaming step [38,39,11,12,37], i.e., v̂ iðt þ DtÞ–v iðtÞ. To ensure Galilean invariance, a random
shift of the collision cells is performed in every collision step [40].

2.2. Cell-level canonical thermostat

The velocity distribution function for a system of Nc fluid particles of an isothermal system is given by the Maxwell–Boltz-
mann distribution
PðfvgÞ ¼ m
2pkBT

� �3Nc=2

exp � m
2kBT

XNc

i¼1

v2
i

 !
; ð4Þ
where kB is the Boltzmann constant and T the temperature. The distribution function for the (local) kinetic energy
Ek ¼ ðm=2Þ

PNc
i¼1Dv2

i is obtained from the relation
PðEkÞ ¼
1
Z

Z
d Ek �

m
2

XNc

i¼1

Dv2
i

 !
d
XNc

i¼1

Dv i

 !
exp � m

2kBT

XNc

i¼1

Dv2
i

 !
dNc Dv ; ð5Þ
with the partition function Z ¼
R

d
PNc

i¼1Dv i

� �
exp � m

2kBT

PNc
i¼1Dv2

i

� �
dNc Dv . Note, in the presence of an external field, only the

relative velocities Dv i ¼ v i � vcm obey the Maxwell–Boltzmann distribution. This is taken into account by the d-function
with the sum of the velocities. Evaluation of the integrals yields [25]
PðEkÞ ¼
1

EkCðf=2Þ
Ek

kBT

� �f=2

exp � Ek

kBT

� �
: ð6Þ
Here, f ¼ 3ðNc � 1Þ denotes the degrees of freedom of the system and CðxÞ is the gamma function. The distribution function
PðEkÞ itself is denoted as gamma distribution. In the limit f !1, the gamma distribution turns into a Gaussian function with
the mean hEki ¼ fkBT=2 and variance f ðkBTÞ2=2.

To thermalize the velocities of the MPC fluid on the cell level, an energy E0k is taken from the distribution function (6) for
every cell and time step and the velocities Dv i of the particles within a cell are scaled by the corresponding factor a, i.e,
Dv 0i ¼ aDv i, with
a ¼ 2E0k
m
PNc

i¼1Dv2
i

 !1=2

: ð7Þ
For fixed Nc , we then obtain the following distribution function for the relative velocity of a particle in a cell in the limit of a
large number of MPC steps
PðDv ;NcÞ ¼
m

2pkBTð1� 1=NcÞ

� �3=2

exp � m
2kBTð1� 1=NcÞ

Dv2
� �

: ð8Þ
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However, the number of fluid particles in a cell is fluctuating in time. Thus, the actual distribution function is obtained by
averaging Eq. (8) over the Poisson distribution (3)
Fig. 1.
right). T
to Eq. (
PðDvÞ ¼
X1
Nc¼2

e�hNci hNciNc

Nc!
PðDv ;NcÞ= 1� ðhNci þ 1Þe�hNc i

� �
: ð9Þ
In the following, we will denote this type of temperature control as Maxwell–Boltzmann-scaling (MBS) thermostat.

3. Test of the thermostat

We performed various simulations of an MPC fluid to demonstrate the suitability of the proposed thermalization proce-
dure. Since we expect a severe dependence of the velocity distribution on the applied thermostat for non-equilibrium sys-
tems only, we will focus on results for fluids exposed to shear flow and Poiseuille flow. The validity of the thermostat is
evaluated by considering the velocity distribution on the cell level, the temperature profile, and the density profile. The ener-
gies E0k for the velocity scaling (7) are determined by the gamma function distribution of the NAG library [41].

3.1. Shear flow

For the shear-flow simulations, we consider a system with a cubic simulation box of side length L ¼ 30a and periodic
boundary conditions. Systems with the average particle numbers hNci ¼ 3, 5, and 10 are considered, corresponding to values
typically used in simulations [3,4]. Lengths and time are scaled according to ~rb ¼ rb=a, with b 2 fx; y; zg, and ~t ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ma2

p
,

which corresponds to the choice kBT ¼ 1; a ¼ 1, and m ¼ 1. The rotation angle is set to a ¼ 130o and the collision time to
D~t ¼ 0:1. This corresponds to a fluid system, where the transport of momentum is mainly due to collisions [35,42]. A station-
ary and homogeneous shear flow is established by applying Lees–Edwards boundary conditions [43] with flow along the
x-axis and the gradient along the y-axis. To test the thermostat under strong shear flow, the shear rate is chosen as
~_c ¼ 0:3.

The simulation results show that the MBS thermostat efficiently controls the local, and hence global, temperature in a
profile-unbiased way. Fig. 1 displays results for the distribution of the magnitude of the particle velocities within the colli-
sion cells for various particle numbers. The comparison with the corresponding theoretical expression Eq. (9) exhibits excel-
lent agreement and confirms that the MBS thermostat yields the correct local velocity distribution under strong shear flow.
The shift of the curves for the various particle numbers shows the strong dependence of the distribution on the particle num-
ber fluctuations in a collision cell. Naturally, this effect disappears with increasing particle number and a limiting curve is
assumed for hNci ! 1.

For comparison, the inset of Fig. 1 shows the velocity distribution obtained by scaling the relative velocities according to
Dv 0i ¼ Dv i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðNc � 1ÞkBT

m
PNc

i¼1Dv2
i

s
: ð10Þ
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Distribution functions of the particle velocities jDv j in a collision cell under shear flow for the average particle numbers hNci ¼ 3, 5, 10, and1 (left to
he solid lines are determined using Eq. (9). The inset shows the distribution function for velocity scaling with the average kinetic energy according

10) for hNci ¼ 10 in comparison to the correct Maxwell–Boltzmann result (smooth line).
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This is a straightforward extension of the profile-unbiased velocity-scaling method to the collision-cell level [27,30,31]. The
thermostat yields the correct local temperature, however the velocity distribution function is clearly different from that ex-
pected theoretically (Eq. (9)). This emphasizes the relevance of the fluctuations in the kinetic energy to arrive at the correct
canonical distribution.

3.2. Poiseuille flow

In the Poiseuille flow simulations, the MPC fluid is confined between two planar walls parallel to the xz-plane of the ref-
erence system and periodic boundary conditions are applied parallel to the walls [38,28,7,11]. A gravitational field acting on
every fluid particle induces a flow along the x-axis corresponding to a pressure-driven flow. Hence, the streaming step of the
MPC algorithm along the flow direction is now given by
v̂ ixðt þ DtÞ ¼ v ixðtÞ þ gDt; ð11Þ

rixðt þ DtÞ ¼ rixðtÞ þ v ixðtÞDt þ 1
2

gDt2: ð12Þ
Applying the bounce-back rule [38] to account for the no-slip boundary conditions leads to a parabolic velocity profile
vxðyÞ ¼
4vmaxðH � yÞy

H2 ð13Þ
in the stationary state, where H is the distance between the two walls and vmax is the maximum flow velocity. The velocity
vmax depends on the strength of the applied field, the surface separation, and the viscosity g of the fluid [44]
vmax ¼
mNcgH2

8g
: ð14Þ
To reduce fluid slip at the surfaces, the phantom-particle approach is adopted as proposed in Ref. [38] with the extension
described in Ref. [37] to account for particle number fluctuations. This means that the collision cells penetrated by walls
and hence containing a smaller number of particles than bulk cells are filled with phantom particles. As number of phantom
particles, we choose the number of (real) particles contained in the surface cells at the opposite wall and intercepted by this
wall. The velocity of the phantom particles is taken from the Maxwell–Boltzmann distribution. Since the sum of Gaussian
random numbers is again Gaussian, it suffices to determine a single random vector P from a Gaussian distribution function
with zero mean and variance mNpkBT , where Np is the number of phantom particles. The center-of-mass velocity of the sur-
face cell with phantom particles is then given by v̂cm ¼

PNc
i¼1v̂ i þ P

� �
=ðNc þ NpÞ. In the collision step, the relative velocities

with respect to v̂cm of the particles within this cell are rotated.
The same parameters as for the shear-flow simulations are used, except for the system size which is Lx ¼ Lz ¼ H ¼ 20a.

The gravitational field strength is ~g ¼ 0:01.
For comparison, additional simulations are performed without any thermostat and with a profile-unbiased global scaling

scheme. In the latter case, the velocities are scaled according to
Dv 0i ¼ Dv i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðN � NclÞkBT

m
PN

i¼1Dv2
i

s
; ð15Þ
where Ncl is the number of cells occupied by particles [27]. In contrast to Eq. (10), all fluid particles are taken into account to
calculate the scaling factor and all particles are scaled by the same factor. Hence, we will denote this scheme as global scaling
in the following.

The measured velocity profiles for the three different thermalization schemes are shown in Fig. 2(a). All of them yield
parabolic velocity profiles with a similar small but finite slip at the walls. This slip is a consequence of the non-local inter-
action between the fluid particles in the collision step. However, the slip is not affecting the viscosity of the fluid. Simply a
larger value of H, determined by extrapolating the profile to vx ¼ 0, has to be used in Eq. (13) to determine the viscosity from
this expression. The figure reflects the influence of the thermostat on the velocity profile. The viscosity extracted from the
profile via Eqs. (13) and (14) is ~g ¼ 8:7 for the MBS thermostat, in agreement with theoretical expectations [37], while ther-
malization by collisions with wall phantom particles yields a 3% larger and by global scaling a 5% smaller value. The reason
for the differences is evident from Fig. 2(b and c), which show the profiles for the normalized kinetic energy eEk ¼ 2Ek=ð3kBTÞ
and particle number. The external field increases the kinetic energy and hence the temperature of the MPC particles. Without
explicit thermostat, the system is thermalized by the wall phantom particles. Evidently, the heat transport within the fluid is
not fast enough to ensure a constant kinetic energy across the slit. A stationary state is reached, where the temperature is
close to the desired value at the walls, but is larger in the central part of the slit [34]. A similar inhomogeneity, although less
pronounced, has been found in Ref. [45] in dissipative particle dynamics (DPD) simulations of periodic Poiseuille flows.
Accompanied by kinetic energy inhomogeneities are variations in the particle number in a collision cell. For a lower temper-
ature a larger particle density is obtained and vice versa. Global scaling restores the average kinetic energy of the system,
however, the local kinetic energy is not uniform across the slit. Again, the kinetic energy modulation is accompanied by den-
sity inhomogeneities. Only the MBS thermostat ensures uniform kinetic energy and density profiles across the slit.
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As for the shear-flow simulations, the velocity distribution for the MBS thermostat agrees with the theoretical expression
Eq. (9) (cf. Fig. 3). In addition, the distribution function of the particle velocities in a collision cell obtained by the global scal-
ing scheme agrees very well with the theoretical expression despite the modulations in the temperature profile. The origin
lies on the one hand in the large number of particles involved in global temperature scaling. With increasing number of de-
grees of freedom, the effect of velocity scaling on the distribution function becomes smaller and vanishes in the limit of infi-
nitely many degrees of freedom. On the other hand, our calculations of the velocity distribution functions in the regions of
higher, i.e., 0 < ~y < 5 and 15 < ~y < 20, and lower, i.e., 5 < ~y < 15, kinetic energies yield distributions which are shifted to
lower and higher velocities, respectively, compared to the MBS distribution. This demonstrates the influence of the modified
kinetic energies on the velocity distribution. However, the distribution determined over the whole system is indistinguish-
able from the MBS distribution within the accuracy of the simulation, because the shifts cancel to leading order in DEk=Ek. In
contrast, for the system without explicit scaling, the velocity distribution function is shifted to larger velocities and broad-
ened due to the higher mean temperature.
4. Dynamic structure factor

Thermal fluctuations of the particle density qðr; tÞ are dynamically coupled and the analysis of their dynamic correlation
functions in the limit of small wave vectors and frequencies provides insight into the transport coefficients of the fluid [46,4].
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The dynamic structure factor is easily accessible by scattering techniques and, thus, is widely used to determine dynamic and
transport coefficients of fluids [47]. To illustrate the differences between a non-thermalized equilibrium system and the sys-
tem with an MBS thermostat, we determine the dynamic structure factor of the MPC fluid.

The dynamic structure factor is defined as [48]
Fig. 4.
central
multipl
Sðk;xÞ ¼
Z
hqðk; tÞqð�k;0Þie�ixt dt; ð16Þ
with the intermediate scattering function Fðk; tÞ ¼ hqðk; tÞqð�k;0Þi and the density of our point-like particles in Fourier
space
qðk; tÞ ¼ 1ffiffiffiffi
N
p

XN

j¼1

eikrjðtÞ: ð17Þ
Evaluation of the expressions yields [46]
Sðk;xÞ ¼ kBTNc
cv

cp

� �
c2k4C

ðx2 � c2k2Þ2 þ ðxk2CÞ2
þ 1� cv

cp

� �
DT k2

x2 þ ðk2DTÞ2
� 1� cv

cp

� �
ðx2 � c2k2ÞDT k2

ðx2 � c2k2Þ2 þ ðxk2CÞ2

( )
ð18Þ
for a system without thermostat. Here, DT is the thermal diffusion coefficient, C the sound attenuation factor, cv and cp are
the specific heat capacities at constant volume and pressure, respectively, and c is the adiabatic speed of sound. The defini-
tions of the individual terms are given in the appendix.

To investigate the effect of a local thermostat, we perform simulations for a cubic simulation box of side length L ¼ 20a
with periodic boundary conditions. The other parameters are the same as for the simulation of the Poiseuille flow. Velocity
scaling via the MBS thermostat is performed at every collision step.

Fig. 4 displays simulation results with and without temperature scaling for the smallest wave vector k ¼ 2p=L. Evidently,
the theoretical expression (18) agrees very well with the simulation result without thermostat. The dynamic structure factor
for the thermalized system differs significantly from that of the non-thermalized system: The central peak completely van-
ishes and the Brillouin peaks are shifted to frequencies of smaller magnitude (cf. Fig. 4). As Fig. 5 shows, the exponential
decay in the time correlation function Fðk; tÞ is absent for the MBS scheme, which translates into a missing central peak
in the spectra which in turn is related to thermal diffusion. The differences in Sðk;xÞ are explained as follows: The local ther-
mostat controls the temperature on the length scale of a collision cell. The velocities of all particles within a given cell obey
the correct energy distribution function. Hence, there is no diffusive energy transport. Energy is transported only via sound
waves, which is manifested in the presence of the Brillouin peaks. Furthermore, a local thermostat maintains a homogenous
distribution of kinetic energy on a microscopic scale and therefore corresponds to an isothermal rather than an adiabatic
situation. As a consequence, the sound propagation should exhibit an isothermal sound velocity cT rather than an adiabatic
sound velocity cS, where
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cS ¼
ffiffiffi
c
p

cT ¼
ffiffiffiffiffiffiffiffiffiffiffi
ckBT

m

r
ð19Þ
for the MPC fluid. This is confirmed by the simulation. The frequency xBðkÞ of the Brillouin peak is connected with the gen-
eralized sound velocity by the dispersion relation
xBðkÞ ¼ cTðkÞk: ð20Þ
Hence, it is clear that the frequencies of the Brillouin peaks for the two types of simulations should be shifted by a factorffiffiffiffiffiffiffiffiffiffiffiffi
cp=cv

p
¼

ffiffiffiffiffiffiffiffi
5=3

p
. The comparison of the Brillouin frequencies of Fig. 4 confirms that this indeed applies.

5. Conclusions

We have introduced a cell-level thermostat for the SRD version of MPC dynamics, which yields a Maxwell–Boltzmann
distribution for the fluid particle velocities. In the MBS thermostat, the relative velocities with respect to the center-of-mass
velocity of a collision cell of all particles within such cell are scaled by a stochastic factor, leaving the dynamical properties of
the system unaltered. The stochastic factor is determined from the distribution function (gamma distribution) of the kinetic
energy of the fluid particles. The comparison of the simulation results with theoretical expected distribution functions shows
that the MBS method produces the desired behavior on a local scale.

The MBS thermostat roughly increases the amount of required CPU time by 70% compared to a non-thermalized system. A
slightly smaller increase in CPU time is obtained for the local velocity-scaling scheme according to Eq. (10). In both cases, the
additional CPU time is spend for the calculation of the kinetic energy and the scaling of the velocities. The MPC algorithm
assigning Maxwellian distributed random relative velocities in the collision step requires approximately 20% more CPU time
[28,27] for a three-dimensional system as the MBS method, as our tests have been shown. Hence, the various thermostats
increase the required CPU time by approximately the same amount. For moderate external fields, thermalization is not re-
quired at every MPC step. Thus, the additional CPU load can be reduced if the kinetic energy is adjusted every few MPC steps
only.

We like to point out that the MBS thermalization method can also be applied to other particle simulation methods. For
example, in a standard molecular dynamics simulation [25], the velocities of all particles can be scaled using the factor a of
Eq. (7), where the sum is over all particles, to arrive at a Maxwellian velocity distribution.
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Appendix A. Definitions

In this appendix the various variables defined in Section 4 are given in terms of the MPC fluid parameters [46].
The thermal diffusion coefficient DT reads
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DT ¼ DT;col þ DT;kin; ð21Þ
with
DT;col ¼
a2

Dt
1� 1
hNci

� �
1� cos a

15hNci
; ð22Þ

DT;kin ¼
1
2

kBT
m

Dt
3

1� cos a
� 1þ 6

hNci
4
5
� 1

4
1

sin2 a=2

 ! !
: ð23Þ
The specific heat capacities are given by
cv ¼
3kB

2m
; cp ¼ cv þ

kB

m
; c ¼ cp

cv
¼ 5

3
: ð24Þ
The sound attenuation factor is defined as
C ¼ DTðc� 1Þ þ Dv ; ð25Þ
with
Dv ¼
4
3
ðmkin þ mcolÞ ð26Þ
and the kinematic viscosity
m ¼ mkin þ mcol; ð27Þ
where
mkin ¼
kBT
2m

Dt
5 hNci

ðhNci � 1þ e�hNciÞ ð2� cos a� cos 2aÞ � 1
� �

; ð28Þ

mcol ¼
a2

18hNciDt
ðhNci � 1þ e�hNciÞð1� cos aÞ: ð29Þ
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